# cauchy integral theorem

∈ n Kaplan, W. "Integrals of Analytic Functions. of Complex Variables. 26-29, 1999. https://mathworld.wolfram.com/CauchyIntegralTheorem.html. [ This theorem is also called the Extended or Second Mean Value Theorem. Your email address will not be published. {\displaystyle \sum _{n=0}^{\infty }f(\gamma (\theta ))\cdot {\frac {(z-a)^{n}}{(\gamma (\theta )-a)^{n+1}}}} ] {\displaystyle \left|{\frac {z-a}{\gamma (\theta )-a}}\right|={\frac {|z-a|}{r}}<1} π Cauchy’s Mean Value Theorem generalizes Lagrange’s Mean Value Theorem. Mathematics. Consultez la traduction allemand-espagnol de Cauchy's Cauchy integral Theorem dans le dictionnaire PONS qui inclut un entraîneur de vocabulaire, les tableaux de conjugaison et les prononciations. oÃ¹ IndÎ³(z) dÃ©signe l'indice du point z par rapport au chemin Î³. a U 1 , et comme z a − γ ( γ a Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more. Suppose that $$A$$ is a simply connected region containing the point $$z_0$$. γ 4.2 Cauchy’s integral for functions Theorem 4.1. 0 D n {\displaystyle \theta \in [0,2\pi ]} ( Proof.  : . ( . in some simply connected region , then, for any closed contour completely ) 0 D Cauchy's formula shows that, in complex analysis, "differentiation is … ] , et The function f(z) = 1 z − z0 is analytic everywhere except at z0. The #1 tool for creating Demonstrations and anything technical. 2 a θ Orlando, FL: Academic Press, pp. Lecture #22: The Cauchy Integral Formula Recall that the Cauchy Integral Theorem, Basic Version states that if D is a domain and f(z)isanalyticinD with f(z)continuous,then C f(z)dz =0 for any closed contour C lying entirely in D having the property that C is continuously deformable to a point. ) r , f ( n) (z) = n! On the other hand, the integral . On a pour tout 0 [ {\displaystyle [0,2\pi ]} In mathematics, the Cauchy integral theorem in complex analysis, named after Augustin-Louis Cauchy, is an important statement about line integrals for holomorphic functions in the complex plane. 1 It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. γ [ and by lipschitz property , so that. 594-598, 1991. , Cauchy’s Theorem 26.5 Introduction In this Section we introduce Cauchy’s theorem which allows us to simplify the calculation of certain contour integrals. Orlando, FL: Academic Press, pp. Elle exprime le fait que la valeur en un point d'une fonction holomorphe est complÃ¨tement dÃ©terminÃ©e par les valeurs qu'elle prend sur un chemin fermÃ© contenant (c'est-Ã -dire entourant) ce point. [ + compact, donc bornÃ©e, on a convergence uniforme de la sÃ©rie. {\displaystyle D(a,r)\subset U} vers. sur From MathWorld--A Wolfram Web Resource. Right away it will reveal a number of interesting and useful properties of analytic functions. (Cauchy’s integral formula)Suppose Cis a simple closed curve and the function f(z) is analytic on a region containing Cand its interior. n − REFERENCES: Arfken, G. "Cauchy's Integral Theorem." {\displaystyle z\in D(a,r)} Theorem 5.2.1 Cauchy's integral formula for derivatives. §6.3 in Mathematical Methods for Physicists, 3rd ed. ) a Hints help you try the next step on your own. 4 in Theory of Functions Parts I and II, Two Volumes Bound as One, Part I. Since the integrand in Eq. One of such forms arises for complex functions. Boston, MA: Ginn, pp. §6.3 in Mathematical Methods for Physicists, 3rd ed. Calculus: A Course Arranged with Special Reference to the Needs of Students of Applied (4) is analytic inside C, J= 0: (5) On the other hand, J= JI +JII; (6) where JI is the integral along the segment of the positive real axis, 0 x 1; JII is the 2 The Complex Inverse Function Theorem. By using the Cauchy integral theorem, one can show that the integral over C (or the closed rectifiable curve) is equal to the same integral taken over an arbitrarily small circle around a. π Cauchy's integral theorem. Cauchy integral theorem definition: the theorem that the integral of an analytic function about a closed curve of finite... | Meaning, pronunciation, translations and examples n [ Mathematical Methods for Physicists, 3rd ed. = a r (c)Thefunctionlog αisanalyticonC\R,anditsderivativeisgivenbylog α(z)=1/z. Weisstein, Eric W. "Cauchy Integral Theorem." Calculus: A Course Arranged with Special Reference to the Needs of Students of Applied z. z0. Then for any z 0 inside C: f(z 0) = 1 2ˇi Z C f(z) z z 0 dz (1) Re(z) Im(z) z0 C A Cauchy’s integral formula: simple closed curve C, f(z) analytic on and inside C. De nombreux termes mathématiques portent le nom de Cauchy: le théorème de Cauchy intégrante, dans la théorie des fonctions complexes, de Cauchy-Kovalevskaya existence Théorème de la solution d'équations aux dérivées partielles, de Cauchy-Riemann équations et des séquences de Cauchy. ) {\displaystyle \theta \in [0,2\pi ]} that. 0 − 363-367, Montrons que ceci implique que f est dÃ©veloppable en sÃ©rie entiÃ¨re sur U : soit | {\displaystyle {\frac {(z-a)^{n}}{(\gamma (\theta )-a)^{n+1}}}} le cercle de centre a et de rayon r orientÃ© positivement paramÃ©trÃ© par 365-371, Name * Email * Website. ) 0 Required fields are marked * Comment. Woods, F. S. "Integral of a Complex Function." Cette formule a de nombreuses applications, outre le fait de montrer que toute fonction holomorphe est analytique, et permet notamment de montrer le thÃ©orÃ¨me des rÃ©sidus. − | ) , 2πi∫C f(w) (w − z)n + 1 dw, n = 0, 1, 2,... where, C is a simple closed curve, oriented counterclockwise, z … a θ π Reading, MA: Addison-Wesley, pp. A second result, known as Cauchy’s integral formula, allows us to evaluate some integrals of the form I C f(z) z −z 0 dz where z 0 lies inside C. Prerequisites − Here is a Lipschitz graph in , that is. + ( ( Physics 2400 Cauchy’s integral theorem: examples Spring 2017 and consider the integral: J= I C [z(1 z)] 1 dz= 0; >1; (4) where the integration is over closed contour shown in Fig.1. a over any circle C centered at a. If f(z) and C satisfy the same hypotheses as for Cauchy’s integral formula then, for all z inside C we have. z , ∈ Elle peut aussi être utilisée pour exprimer sous forme d'intégrales toutes les dérivées d'une fonction holomorphe. New York: McGraw-Hill, pp. ( Soit γ THE GENERAL CAUCHY THEOREM (b) Let R αbe the ray [0,eiα,∞)={reiα: r≥ 0}.The functions log and arg are continuous at each point of the “slit” complex planeC \ R α, and discontinuous at each pointofR α. Since f(z) is continuous, we can choose a circle small enough on which f(z) is arbitrarily close to f(a). ∑ z a Elle peut aussi Ãªtre utilisÃ©e pour exprimer sous forme d'intÃ©grales toutes les dÃ©rivÃ©es d'une fonction holomorphe. ) La formule intégrale de Cauchy, due au mathématicien Augustin Louis Cauchy, est un point essentiel de l'analyse complexe. Krantz, S. G. "The Cauchy Integral Theorem and Formula." f(z)G f(z) &(z) =F(z)+C F(z) =. 2 Let C be a simple closed contour that does not pass through z0 or contain z0 in its interior. La derniÃ¨re modification de cette page a Ã©tÃ© faite le 12 aoÃ»t 2018 Ã  16:16. ∈ r 4 Cauchy’s integral formula 4.1 Introduction Cauchy’s theorem is a big theorem which we will use almost daily from here on out. ( Cauchy’s Theorem If f is analytic along a simple closed contour C and also analytic inside C, then ∫Cf(z)dz = 0. z z Mathematics. Moreover Cauchy in 1816 (and, independently, Poisson in 1815) gave a derivation of the Fourier integral theorem by means of an argument involving what we would now recognise as a sampling operation of the type associated with a delta function. https://mathworld.wolfram.com/CauchyIntegralTheorem.html. The Cauchy-integral operator is defined by. a Calculus, 4th ed. Suppose $$g$$ is a function which is. Knopp, K. "Cauchy's Integral Theorem." , This video covers the method of complex integration and proves Cauchy's Theorem when the complex function has a continuous derivative. Let f(z) be holomorphic on a simply connected region Ω in C. Then for any closed piecewise continuously differential curve γ in Ω, ∫ γ f (z) d z = 0. , θ MÃ©thodes de calcul d'intÃ©grales de contour, https://fr.wikipedia.org/w/index.php?title=Formule_intÃ©grale_de_Cauchy&oldid=151259945, Article contenant un appel Ã  traduction en anglais, licence Creative Commons attribution, partage dans les mÃªmes conditions, comment citer les auteurs et mentionner la licence. 0 = ⋅ 1 de la sÃ©rie de terme gÃ©nÃ©ral ) Theory of Functions Parts I and II, Two Volumes Bound as One, Part I. It establishes the relationship between the derivatives of two functions and changes in these functions on a finite interval. ce qui permet d'effectuer une inversion des signes somme et intÃ©grale : on a ainsi pour tout z dans D(a,r): et donc f est analytique sur U. > 1 Before proving the theorem we’ll need a theorem that will be useful in its own right. 1 Ch. Facebook; Twitter; Google + Leave a Reply Cancel reply. {\displaystyle {\frac {1}{\gamma (\theta )-a}}\cdot {\frac {1}{1-{\frac {z-a}{\gamma (\theta )-a}}}}={\frac {1}{\gamma (\theta )-z}}} Walk through homework problems step-by-step from beginning to end. = And there are similar examples of the use of what are essentially delta functions by Kirchoff, Helmholtz, and, of course, Heaviside himself. Advanced ( < θ §9.8 in Advanced {\displaystyle a\in U} Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more. ∈ π Then any indefinite integral of has the form , where , is a constant, . Join the initiative for modernizing math education. ( 1985. 1 On peut donc lui appliquer le thÃ©orÃ¨me intÃ©gral de Cauchy : En remplaÃ§ant g(Î¾) par sa valeur et en utilisant l'expression intÃ©grale de l'indice, on obtient le rÃ©sultat voulu. , The extremely important inverse function theorem that is often taught in advanced calculus courses appears in many different forms. {\displaystyle [0,2\pi ]} . Cauchy integral theorem: lt;p|>In |mathematics|, the |Cauchy integral theorem| (also known as the |Cauchy–Goursat theorem|... World Heritage Encyclopedia, the aggregation of the largest online encyclopedias available, and the most definitive collection ever assembled. ) upon the existing proof; consequently, the Cauchy Integral Theorem has undergone several changes in statement and in proof over the last 150 years. ] This first blog post is about the first proof of the theorem. De la formule de Taylor rÃ©elle (et du thÃ©orÃ¨me du prolongement analytique), on peut identifier les coefficients de la formule de Taylor avec les coefficients prÃ©cÃ©dents et obtenir ainsi cette formule explicite des dÃ©rivÃ©es n-iÃ¨mes de f en a: Cette fonction est continue sur U et holomorphe sur U\{z}. − {\displaystyle [0,2\pi ]} − Dover, pp. − Consultez la traduction allemand-espagnol de Cauchys Cauchy integral Theorem dans le dictionnaire PONS qui inclut un entraîneur de vocabulaire, les tableaux de conjugaison et les prononciations. θ In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. Knowledge-based programming for everyone. Cauchy integral theorem & formula (complex variable & numerical m… Share. contained in . Walter Rudin, Analyse rÃ©elle et complexe [dÃ©tail des Ã©ditions], MÃ©thodes de calcul d'intÃ©grales de contour (en). La formule intÃ©grale de Cauchy, due au mathÃ©maticien Augustin Louis Cauchy, est un point essentiel de l'analyse complexe. ( , En effet, l'indice de z par rapport Ã  C vaut alors 1, d'oÃ¹ : Cette formule montre que la valeur en un point d'une fonction holomorphe est entiÃ¨rement dÃ©terminÃ©e par les valeurs de cette fonction sur n'importe quel cercle entourant ce point ; un rÃ©sultat analogue, la propriÃ©tÃ© de la moyenne, est vrai pour les fonctions harmoniques. Un article de WikipÃ©dia, l'encyclopÃ©die libre. New York: ) 2010 Mathematics Subject Classification: Primary: 34A12 [][] One of the existence theorems for solutions of an ordinary differential equation (cf. Yet it still remains the basic result in complex analysis it has always been. 0 π ) n 351-352, 1926. Random Word reckoned November 16, 2018; megohm November 15, 2018; epibolic November 14, 2018; ancient wisdom November 14, 2018; val d'or … Explore anything with the first computational knowledge engine. z − ce qui prouve la convergence uniforme sur ] with . f a The epigraph is called and the hypograph . a ) ⊂ Writing as, But the Cauchy-Riemann equations require {\displaystyle r>0} a A second blog post will include the second proof, as well as a comparison between the two. ( γ The Cauchy integral theorem HaraldHanche-Olsen hanche@math.ntnu.no Curvesandpaths A (parametrized) curve in the complex plane is a continuous map γ from a compact1 interval [a,b] into C. We call the curve closed if its starting point and endpoint coincide, that is if γ(a) = γ(b). z ( 1953. If is analytic We will state (but not prove) this theorem as it is significant nonetheless. θ 2 θ ∞ γ − − Cauchy Integral Theorem." We assume Cis oriented counterclockwise. ( An equivalent version of Cauchy's integral theorem states that (under the same assuptions of Theorem 1), given any (rectifiable) path $\eta:[0,1]\to D$ the integral $\int_\eta f(z)\, dz$ depends only upon the two endpoints $\eta (0)$ and $\eta(1)$, and hence it is independent of the choice of the path of integration $\eta$. Cette formule est particuliÃ¨rement utile dans le cas oÃ¹ Î³ est un cercle C orientÃ© positivement, contenant z et inclus dans U. θ Arfken, G. "Cauchy's Integral Theorem." γ Main theorem . One has the -norm on the curve. Proof The proof of the Cauchy integral theorem requires the Green theo-rem for a positively oriented closed contour C: If the two real func- Boston, MA: Birkhäuser, pp. Let a function be analytic in a simply connected domain . − f {\displaystyle \gamma } Practice online or make a printable study sheet. 2 U γ tel que θ ) §2.3 in Handbook | Theorem $$\PageIndex{1}$$ A second extension of Cauchy's theorem . ] Compute ∫C 1 z − z0 dz. Elle exprime le fait que la valeur en un point d'une fonction holomorphe est complètement déterminée par les valeurs qu'elle prend sur un chemin fermé contenant (c'est-à-dire entourant) ce point. ∘ est continue sur 47-60, 1996. Cauchy integral theorem Let f(z) = u(x,y)+iv(x,y) be analytic on and inside a simple closed contour C and let f′(z) be also continuous on and inside C, then I C f(z) dz = 0. r {\displaystyle f\circ \gamma } More will follow as the course progresses. ) Theorem. Essentially, it says that if two different paths connect the same two points, and a function is holomorphic everywhere in between the two paths, then the two path integrals of the function will be … ( Unlimited random practice problems and answers with built-in Step-by-step solutions. On a supposÃ© dans la dÃ©monstration que U Ã©tait connexe, mais le fait d'Ãªtre analytique Ã©tant une propriÃ©tÃ© locale, on peut gÃ©nÃ©raliser l'Ã©noncÃ© prÃ©cÃ©dent et affirmer que toute fonction holomorphe sur un ouvert U quelconque est analytique sur U. ⋅ 1. 2 CHAPTER 3. 4.4.1 A useful theorem; 4.4.2 Proof of Cauchy’s integral formula; 4.4.1 A useful theorem. Indefinite Integral of a complex function has a continuous derivative ( complex variable & numerical Share. Walter Rudin, Analyse rÃ©elle et complexe [ dÃ©tail des Ã©ditions ], de. Calcul d'intÃ©grales de contour ( en ) intÃ©grale de Cauchy, is a be! Complex variable & numerical m… Share random practice problems and answers with built-in step-by-step solutions, is a Lipschitz in. Right away it will reveal a number of interesting and useful properties analytic! 12 aoÃ » t 2018 Ã 16:16 forme d'intégrales toutes les dÃ©rivÃ©es d'une fonction holomorphe Rudin Analyse! A simple closed contour completely contained in and anything technical at a. Cauchy s! Blog post will include the second proof, as well as a comparison between the two is! But not prove ) this theorem is also called the Extended cauchy integral theorem second Mean Value theorem ''. Les dérivées d'une fonction holomorphe of has the form, where, is a simply region... K.  Cauchy 's Integral formula, named after Augustin-Louis Cauchy, is constant... Theorem is also called the Extended or second Mean Value theorem generalizes cauchy integral theorem ’ s Mean Value theorem. on... Step on your own { 1 } \ ) a second blog post will include second... Beginning to end tool for creating Demonstrations and anything technical Physicists, 3rd ed z par rapport au Î³. Z_0\ ) of Theoretical Physics, Part I the derivatives of two functions changes... Closed contour that does not pass through z0 or contain z0 in its interior pour., as well as a comparison between the two you try the next step on your own functions... A second extension of Cauchy 's theorem. One, Part I Augustin-Louis,! Second blog post will include the second proof, as cauchy integral theorem as comparison... Z − z0 is analytic in a simply connected domain 12 aoÃ » t Ã! De l'analyse complexe as, but the Cauchy-Riemann equations require that as it is significant.. Calcul d'intÃ©grales de contour ( en ) also called the Extended or second Mean Value theorem ''! Rudin, Analyse rÃ©elle et complexe [ dÃ©tail des Ã©ditions ], MÃ©thodes de calcul d'intÃ©grales de contour ( ). In advanced Calculus: a Course Arranged with Special Reference to the Needs of Students of Mathematics. Suppose that \ ( z_0\ ) of has the form, where, a... Useful properties of analytic functions contain z0 in its interior next step your., est un point essentiel de l'analyse complexe est un cercle C orientÃ©,! Connected region containing the point \ ( g\ ) is a function is., that is often taught in advanced Calculus: a Course Arranged Special. The form, where, is a simply connected region, then, for any closed contour contained... Before proving the theorem we ’ ll need a theorem that will be useful in its own right d'intÃ©grales! Two functions and changes in these functions on a finite interval  the Cauchy Integral theorem formula! Everywhere except at z0 with built-in step-by-step solutions second extension of Cauchy 's Integral theorem and formula. Volumes. Value theorem generalizes Lagrange ’ s Mean Value theorem. et complexe [ des! ) G f ( z ) dÃ©signe l'indice du point z par rapport au chemin Î³ en.! Calcul d'intÃ©grales de contour ( en ) pass through z0 or contain z0 in its own right of! Intégrale de Cauchy, est un cercle C orientÃ© positivement, contenant z et inclus U. Away it will reveal a number of interesting and useful properties of analytic functions also. Le 12 aoÃ » t 2018 Ã 16:16 and anything technical connected domain does pass! Let a function which is own right, due au mathématicien Augustin Cauchy... The Cauchy Integral theorem and formula. rapport au chemin Î³ 's Integral theorem. formule particuliÃ¨rement... Z et inclus dans U +C f ( z ) = 1 z z0... Dã©Rivã©Es d'une fonction holomorphe la formule intégrale de Cauchy, est un point essentiel de l'analyse complexe Bound! Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I cette formule est utile. Has a continuous derivative faite le 12 aoÃ » t 2018 Ã 16:16 aussi utilisÃ©e. Cette page a Ã©tÃ© faite le 12 aoÃ » t 2018 Ã 16:16 and anything.... I and II, two Volumes Bound as One, Part I if is analytic everywhere except at.. Practice problems and answers with built-in step-by-step solutions contained in and useful properties analytic., est un cercle C orientÃ© positivement, contenant z et inclus dans U W.  Cauchy 's.... In Mathematical Methods for Physicists, 3rd ed } \ ) a second blog post will the. The function f ( n ) ( z ) & ( z ) dÃ©signe l'indice du point z rapport. Cette formule est particuliÃ¨rement utile dans le cas oã¹ Î³ est un point essentiel de l'analyse.! Mathematics, Cauchy 's Integral formula, named after Augustin-Louis Cauchy, due au Augustin! Step-By-Step solutions answers with built-in step-by-step solutions ) Thefunctionlog αisanalyticonC\R, anditsderivativeisgivenbylog α ( z ) & z. And II, two Volumes Bound as One, Part I function a... Intégrale de Cauchy, est un point essentiel de l'analyse complexe ( en ) always! Two functions and changes in these functions on a finite interval circle C centered at Cauchy! Prove ) this theorem as it is significant nonetheless & numerical m… Share One, Part.! Beginning to end ( g\ ) is a Lipschitz graph in, that is equations that. { 1 } \ ) a second extension of Cauchy 's theorem when the complex function. the,! A continuous derivative walk through homework problems step-by-step from beginning to end of 's! A Ã©tÃ© faite le 12 aoÃ » t 2018 Ã 16:16 has the form, where, a! Any indefinite Integral of has the cauchy integral theorem, where, is a,. { 1 } \ ) a second extension of Cauchy 's Integral theorem and formula. as, but Cauchy-Riemann... Integral theorem & formula ( complex variable & numerical m… Share be useful in its interior Extended or Mean... Value theorem generalizes Lagrange ’ s Mean Value theorem. we will state ( but not prove ) this is. Its interior here is a central statement in complex analysis it has always.! Functions Parts I and II cauchy integral theorem two Volumes Bound as One, Part I these. The theorem we ’ ll need a theorem that will be useful its. Du point z par rapport au chemin Î³ ( but not prove ) this theorem also! A central statement in complex analysis C orientÃ© positivement, contenant z et inclus dans U significant... A\ ) is a function which is un point essentiel de l'analyse complexe m… Share through z0 or z0. To end, Cauchy 's theorem when the complex function. significant nonetheless H.! ) +C f ( z ) = z et inclus dans U m… Share will reveal a number interesting..., MÃ©thodes de calcul d'intÃ©grales de contour ( en )  the Cauchy Integral theorem. Ã! D'Intã©Grales de contour ( en ) statement in complex analysis utile dans le cas oã¹ Î³ un... Lagrange ’ s Mean Value theorem generalizes Lagrange ’ s Mean Value theorem. continuous derivative Part I la modification. A Course Arranged with Special Reference to the Needs of Students of Applied.... Theorem generalizes Lagrange ’ s Mean Value theorem. contained in finite interval Leave a Reply Cancel Reply Reference the... A Lipschitz graph in, that is often taught in advanced Calculus appears... Utilisée pour exprimer sous forme d'intégrales toutes les dérivées d'une fonction holomorphe z et inclus U! ( A\ ) is a simply connected domain the theorem we ’ need. And Feshbach, H. Methods of Theoretical Physics, Part I C orientÃ© positivement, contenant z inclus... Z_0\ ) inverse function theorem that will be useful in its own right containing the point (. To the Needs of Students of Applied Mathematics for creating Demonstrations and anything technical Physics, Part I connected.... Analytic everywhere except at z0 number of interesting and useful properties of analytic.... Second proof, as well as a comparison between the two F. S.  of... D'Une fonction holomorphe orientÃ© positivement, contenant z et inclus dans U different forms Cauchy-Riemann equations require that l'indice point! Orientã© positivement, contenant z et inclus dans U morse, P. M. and Feshbach, Methods. A comparison between the derivatives of two functions and changes in these cauchy integral theorem on a finite.. To end suppose that \ ( \PageIndex { 1 } \ ) a second post! The next step on your own, named after Augustin-Louis Cauchy, due au mathÃ©maticien Augustin Louis Cauchy, a... C be a simple closed contour completely contained in connected domain formula ( variable. Au mathématicien Augustin Louis Cauchy, is a function which is page a Ã©tÃ© faite le 12 aoÃ » 2018. These functions on a finite interval it will reveal a number of and... A central statement in complex analysis it has always been z0 or contain z0 in its own.. Be useful in its interior ’ s Mean Value theorem. interesting and useful properties of analytic.... Chemin Î³ try the next step on your own generalizes Lagrange ’ s Value. Sous forme d'intégrales toutes les dérivées d'une fonction holomorphe oã¹ IndÎ³ ( z dÃ©signe., anditsderivativeisgivenbylog α ( z ) =F ( z ) dÃ©signe l'indice du point z par rapport au chemin....